# 受検番号 第 番

### 学校選択問題

## 数 学 第1回

(時間 50 分)

### 注意

- 1 解答用紙について
- (1) 解答用紙は1枚で、問題用紙にはさんであります。
- (2) 係の先生の指示に従って、所定の欄2か所に受検番号を書きなさい。
- (3) 答えはすべて解答用紙のきめられたところに、はっきりと書きなさい。
- (4) 解答用紙は切りはなしてはいけません。
- 2 問題用紙について
- (1) 表紙の所定の欄に受検番号を書きなさい。
- (2) 問題は全部で5問あり、表紙を除いて10ページです。
- (3) 問題用紙の余白を利用して、計算したり、図をかいたりしてもかまいません。
- 3 解答について
- (1) 答えに根号を含む場合は、根号をつけたままで答えなさい。
- (2) 答えに円周率を含む場合は, πを用いて答えなさい。
- 印刷のはっきりしないところは、手をあげて係の先生に聞きなさい。

1 次の各問に答えなさい。(45点)

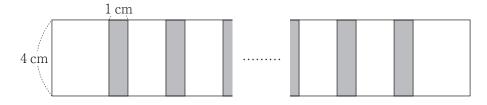
(1) 
$$10x^3y \div \left(-\frac{5}{4}xy^2\right) \times (-2y)^2$$
 を計算しなさい。(4 点)

(2) 
$$x = 2 + \sqrt{3}$$
,  $y = 2 - \sqrt{3}$  のとき,  $x^2 + 4xy + y^2$  の値を求めなさい。(4点)

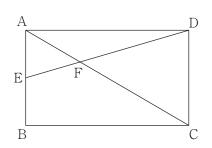
- (3) 2次方程式  $4(x+1)^2 (x+1) 5 = 0$  を解きなさい。(4点)
- (4) 右の表は、中学生30人があるゲームをしたときの得点を 度数分布表に表したものです。この表から読みとることがで きる内容として正しいものを、次のア〜エの中から一つ選び、 その記号を書きなさい。(4点)

| 得点(点) |        |    | 度数(人) |  |  |
|-------|--------|----|-------|--|--|
| 以上未   |        |    |       |  |  |
| 0     | ~      | 10 | 4     |  |  |
| 10    | $\sim$ | 20 | 6     |  |  |
| 20    | ~      | 30 | 11    |  |  |
| 30    | ~      | 40 | 7     |  |  |
| 40    | $\sim$ | 50 | 2     |  |  |
|       | 合計     |    | 30    |  |  |

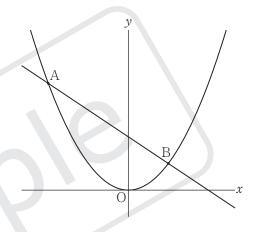
- ア 最頻値は11である。
- **イ** 中央値は25点である。
- ウ 平均値は 24 点である。
- エ 20 点以上30 点未満の階級の相対度数は0.7 である。
- (5) 下の図のように、一直線上に1辺が4 cm の正方形を、辺が1 cm ずつ重なるようにかいていきます。正方形をx 個かいたとき、かげ( )をつけた重なる部分の面積は、重ならない部分の面積より $40 \text{ cm}^2$  小さくなりました。このとき、x の値を求めなさい。(4 点)



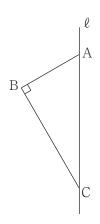
(6) 右の図のような長方形 ABCD があり、辺 ABの中点を Eとします。線分 ACと線分 EDとの交点をFとするとき、 四角形 EBCF の面積は△AFD の面積の何倍になるか求めな さい。(5点)



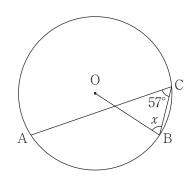
(7) 右の図のように、関数  $y = ax^2$  のグラフと、切片が 4 である一次関数のグラフが、2 点 A ,B で交わって います。点 A の x 座標が -6 ,点 B の x 座標が 3 で あるとき、この一次関数の式を求めなさい。(5 点)



(8) 右の図のような、AB = 4 cm、 $\angle BAC = 60^\circ$ 、 $\angle ABC = 90^\circ$ の $\triangle ABC$  があり、2 点 A、C を通る直線  $\ell$  をひきます。このとき、 $\triangle ABC$  を、直線  $\ell$  を軸として 1 回転させてできる立体の体積を求めなさい。(5 点)



(9) 右の図のように、点〇を中心とする円〇の円周上に  $\widehat{AB}:\widehat{BC}=3:1$ となるような3点A, B, Cをとります。  $\angle ACB=57^\circ$ であるとき、 $\angle OBC$ の大きさxを求めなさい。 (5点)



(10) 次は、先生とSさん、Tさんの会話です。これを読んで、下の問に答えなさい。

先 生「先日,3年1組の生徒35人と3年2組の生徒35人を対象に,通学時間についての アンケートを行いました。次の図は,3年1組の生徒35人と3年2組の生徒35人 の通学時間を箱ひげ図にそれぞれ表したものです。これを見て,気づいたことを 話し合ってみましょう。」



S さん「2つの箱ひげ図を見ると、3年2組の方が通学時間が短い生徒が多いようだね。」 T さん「だけど、最も短い通学時間を比べると、3年1組の方が通学時間が短いよ。それでも、3年2組の方が通学時間が短い生徒が多いといえるのかな。」

Sさん「例えば、通学時間が10分以下の生徒の人数を比べると、

Ι

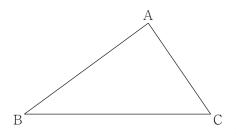
だから、通学時間が10分以下の生徒は3年2組の方が多いよ。」

問 会話中の I にあてはまる,通学時間が10分以下の生徒が3年2組の方が 多い理由を,具体的な生徒の人数を用いて説明しなさい。(5点)

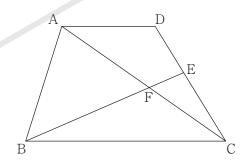
#### **2** 次の各問に答えなさい。(13点)

(1) 下の図のような $\triangle$ ABC があります。辺 BC 上にあり、 $\triangle$ ABP の面積が $\triangle$ APC の面積の 3 倍 となるような点 P をコンパスと定規を使って作図しなさい。

ただし、作図するためにかいた線は、消さないでおきなさい。(6点)



(2) 右の図のように、AD // BC、AC = BCの台形 ABCDがあります。辺CD上に点Eをとり、線分 ACと線分BEとの交点をFとすると、∠EFC = ∠ECBとなりました。このとき、BF = CDであることを証明しなさい。(7点)



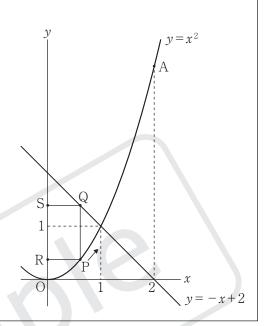
**3** 次は、ある数学の【問題】について、先生とFさん、Gさんが会話している場面です。これを読んで、あとの各間に答えなさい。(13点)

先 生「次の【問題】について、考えてみましょう。|

#### 【問題】

右の図のように、放物線 $y = x^2$ 上を点Pが 原点Oからx座標が2である点Aまで動きま す。点Pのx座標を $t(0 \le t \le 2)$ として、点 Pを通りy軸に平行な直線と直線y = -x + 2との交点をQとします。また、点P、Qを通 り、x軸に平行な直線とy軸との交点をそれぞ れR、Sとし、長方形PQSRをつくります。

長方形 PQSR が正方形になるときの点 Pのx座標を**すべて**求めなさい。



Fさん「辺RPと辺QPの長さが等しいときを考えたらいいのかな。」

G さん「そうだね。点 P と点 Q の x 座標はそれぞれ t なので,辺 RP の長さは  $\boxed{\textbf{P}}$  と表せるよ。ただ,t=0 の場合は辺 RP の長さが 0 だから,除いて考える必要があるね。辺 QP はどうかな。」

F さん「辺 QP は、t=1 の場合に長さが 0 だから、除いて考える必要があるね。0 < t < 1 の場合、点 P と点 Q の y 座標から、辺 QP の長さを t を使って表すことができるよ。」

G さん「そうだね。でも  $1 < t \le 2$  の場合は,辺 QP の長さは 0 < t < 1 の場合とは違う式で表さなければならないよ。」

F さん「なるほど。すると  $1 < t \le 2$  の場合も,辺 QP の長さを正しく表すことができれば, 【問題】は解けそうだね。」

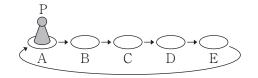
先 生「そのとおりです。それでは、【問題】を解いてみましょう。」

(1)  $\boxed{\textbf{P}}$  にあてはまる式を、tを使って表しなさい。(4点)

(2) 下線部の理由を、点Pと点Qのy座標にふれながら説明しなさい。(5点)

(3) 長方形 PQSR が正方形になるときの点 P の x 座標を**すべて**求めなさい。(4 点)

**4** 右の図のような、A、B、C、D、Eの5つのマス目と、マスAに置かれているコマPがあります。次の【ルール】に従って、コマPを、矢印の方向に動かす操作を行うとき、あとの各問に答えなさい。



ただし、硬貨の表と裏の出かたは、同様に確からしい ものとします。(17点)

#### 【ルール】

- [1] 1枚の硬貨を投げ、表が出たら2マス分、裏が出たら3マス分、コマPは進んで止まる。
- [2] [1]をくり返し、コマPがマスEに止まったとき、操作は終了する。
- (1) 硬貨を2回投げたときに、操作が終了する確率を求めなさい。(5点)

| / - \ | · · · · | O . L.L. |   | ,  |     |
|-------|---------|----------|---|----|-----|
| (2)   | 次の(1)   | (2)に答:   | Ž | なさ | 173 |

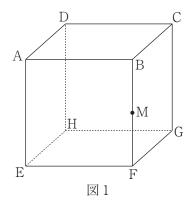
① コマPがマスEを**1回だけ**通り過ぎてから、操作が終了する場合の数は何通りあるか求めなさい。(6点)

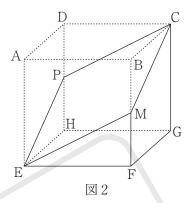
② コマPがマスEを2回だけ通り過ぎてから、操作が終了する場合の数は何通りあるか求めなさい。(6点)

─ 8 ─ 埼 **- 1** 

**5** 図1のように、1辺の長さが $8 \, \mathrm{cm}$ の立方体 ABCD-EFGH があり、辺 BF の中点を M とします。図 $2 \, \mathrm{t}$ 、 $3 \, \mathrm{h}$  C、E、M を通る平面と辺 DH との交点を P とし、立方体 ABCD-EFGH を平面 CMEP で切ったあとにできる立体のうち、頂点 G を含む方の立体です。

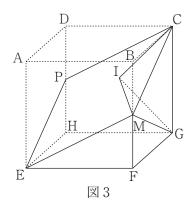
このとき, あとの各問に答えなさい。(12点)





(1) 図2の四角形 CMEP の面積を求めなさい。(6点)

(2) 図 3 は、図 2 において、頂点 G から面 CMEP に垂線をひき、面 CMEP との交点を I としたものです。このとき、三角錐 CIMG の体積を求めなさい。(6 点)





(以上で問題は終わりです。)